74HC/HCT221

FEATURES

- Pulse width variance is typically less than $\pm\,5\%$
- Pin-out identical to "123"
- · Overriding reset terminates output pulse
- nB inputs have hysteresis for improved noise immunity
- Output capability: standard (except for nR_{EXT}/C_{EXT})
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT221 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT221 are dual non-retriggerable monostable multivibrators. Each multivibrator features an active LOW-going edge input ($n\overline{A}$) and an active HIGH-going edge input (nB), either of which can be used as an enable input.

Pulse triggering occurs at a particular voltage level and is not directly related to the transition time of the input pulse. Schmitt-trigger input circuitry for the nB inputs allow jitter-free triggering from inputs with slow transition rates, providing the circuit with excellent noise immunity.

Once triggered, the outputs $(nQ, n\overline{Q})$ are independent of further transitions of $n\overline{A}$ and $n\overline{B}$ inputs and are a function of the timing components. The output pulses can be terminated by the overriding active LOW reset inputs $(n\overline{R}_D)$. Input pulses may be of any duration relative to the output pulse.

Pulse width stability is achieved through internal compensation and is virtually independent of V_{CC} and temperature. In most applications pulse stability will only be limited by the accuracy of the external timing components.

The output pulse width is defined by the following relationship:

 $t_{W} = C_{EXT}R_{EXT}In_{2}$ $t_{W} = 0.7C_{EXT}R_{EXT}$

Pin assignments for the "221" are identical to those of the "123" so that the "221" can be substituted for those products in systems not using the retrigger by merely changing the value of R_{EXT} and/or C_{EXT} .

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \text{ °C}$; $t_r = t_f = 6 \text{ ns}$

evmpol		CONDITIONS	ТҮР			
STNIDUL	FARAMETER	CONDITIONS	НС	нст		
	propagation delay	C _L = 15 pF; V _{CC} = 5 V;				
t _{PHL}	$n\overline{A}$, nB, $n\overline{R}_{D}$ to nQ, $n\overline{Q}$	$R_{EXT} = 5 k\Omega; C_{EXT} = 0 pF$	29	32	ns	
t _{PLH}	$n\overline{A}$, nB, $n\overline{R}_{D}$ to nQ, $n\overline{Q}$		35	36	ns	
CI	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per package	notes 1 and 2	90	96	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o}) + 0.33 \times C_{EXT} \times V_{CC}^{2} \times f_{o} + D \times 28 \times V_{CC} \text{ where:}$

 f_i = input frequency in MHz; f_o = output frequency in MHz

 $\Sigma (C_L \times V_{CC}^2 \times f_o) = sum of outputs$

C_{EXT} = timing capacitance in pF; C_L = output load capacitance in pF

V_{CC} = supply voltage in V; D = duty factor in %

2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V

74HC/HCT221

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard (except for $nR_{\text{EXT}}/C_{\text{EXT}})$ I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT						
nB	0.30						
nĀ	0.50						
nR _D	0.50						

74HC/HCT221

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER	T _{amb} (°C)								TEST CONDITIONS		
		74HCT										
SYMBOL		+25			-40 to +85		-40 to +125			V _{CC}	WAVEFORMS	
		min	typ	max	min	max.	min.	max.		(v)		
t _{PLH}	propagation delay (trigger) nĀ, nR _D to nQ		30	50		63		75	ns	4.5	$C_{EXT} = 0 \text{ pF};$ $R_{EXT} = 5 \text{ k}\Omega;$ Fig.10	
t _{PLH}	propagation delay (trigger) nB to nQ		24	42		53		63	ns	4.5	$C_{EXT} = 0 \text{ pF};$ $R_{EXT} = 5 \text{ k}\Omega;$ Fig.10	
t _{PHL}	propagation delay (trigger) nĀ to nQ		26	44		55		66	ns	4.5	$C_{EXT} = 0 \text{ pF};$ $R_{EXT} = 5 \text{ k}\Omega;$ Fig.10	
t _{PHL}	propagation delay (trigger) nB to nQ		21	35		44		53	ns	4.5	$\begin{array}{l} C_{\text{EXT}} = 0 \text{ pF};\\ R_{\text{EXT}} = 5 \text{ k}\Omega;\\ \text{Fig.10} \end{array}$	
t _{PHL}	propagation delay (trigger) $n\overline{R}_D$ to $n\overline{Q}$		26	43		54		65	ns	4.5	$\label{eq:CEXT} \begin{split} & \textbf{C}_{\text{EXT}} = 0 \; \textbf{pF}; \\ & \textbf{R}_{\text{EXT}} = 5 \; \textbf{k}\Omega; \\ & \textbf{Fig.10} \end{split}$	
t _{PHL}	propagation delay (reset) $n\overline{R}_{D}$ to nQ		26	43		54		65	ns	4.5	$C_{EXT} = 0 \text{ pF};$ $R_{EXT} = 5 \text{ k}\Omega;$ Fig.11	
t _{PLH}	propagation delay (reset) $n\overline{R}_{D}$ to $n\overline{Q}$		31	51		64		77	ns	4.5	$C_{EXT} = 0 \text{ pF};$ $R_{EXT} = 5 \text{ k}\Omega;$ Fig.11	
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.10	
t _W	trigger pulse width nA = LOW	20	13		25		30		ns	4.5	Fig.10	
t _W	trigger pulse width nB = HIGH	20	13		25		30		ns	4.5	Fig.10	
t _W	pulse width $n\overline{R}_{D} = LOW$	22	13		28		33		ns	4.5	Fig.8	
t _W	output pulse width $n\overline{Q} = LOW$ nQ = HIGH	630	700	770	602	798	595	805	μs	5.0	$\label{eq:CEXT} \begin{split} &C_{EXT} = 100 \text{ nF};\\ &R_{EXT} = 10 \text{ k}\Omega;\\ &\text{Fig.10} \end{split}$	
t _W	trigger pulse width nQ or nQ		140		_		_		ns	4.5	$C_{EXT} = 28 \text{ pF};$ $R_{EXT} = 2 \text{ k}\Omega;$ Fig.10	
t _W	trigger pulse width nQ or nQ		1.5		_		_		μs	4.5	$C_{EXT} = 1 \text{ nF};$ $R_{EXT} = 2 \text{ k}\Omega;$ Fig.10	

74HC/HCT221

	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
SYMBOL		74HCT									WAVEEODME
STMBOL		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min	typ	max	min	max.	min.	max.			
t _W	trigger pulse width nQ or nQ		7		_		_		μs	4.5	$C_{EXT} = 1 \text{ nF};$ $R_{EXT} = 10 \text{ k}\Omega;$ Fig.10
t _{rem}	removal time nR _D to nA or nB	20	12		25		30		ns	4.5	Fig.9
R _{EXT}	external timing resistor	2		1000	-		-		kΩ	5.0	Fig.13
C _{EXT}	external timing capacitor	no lin	nits						pF	5.0	Fig.13